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ABSTRACT

The binary quadratic equation represented by the positive Pellian y* = 6x* +10is analyzed for its distinct integer

solutions. A few interesting relations among the solutions are given. Further, employing the solutions of the above

hyperbola, we have obtained solutions of other choices of hyperbola, parabola and special pythagorean triangle.
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INTRODUCTION

A binary quadratic equation of the form y2 = Dx? +1whereD is non-sguare positive integer has been studied by various
mathematicians for its non-trivial integral solutions. When D takes different integral values [1-2]. For an extensive review
of various problems, one may refer [3-12]. In this communication, a hyperbola given by y* = 6x? +10 is considered and

infinitely many integer solutions are obtained. A few interesting properties among the solutions are obtained.
METHOD OF ANALYSIS

The positive Pell equation representing hyperbola under consideration is
y? =6x*+10 @
whose smallest positive integer solution (X, Y,) is
X% =1,¥%=4
To aobtain the other solutions of (1), consider the Pell equation
Yy’ =6x"+1
whose smallest positive integer solution is

%=2, Yo=5 @)
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Whose general solution is given by

- 1
Xn_mgn
-~ 1
==f
Yn 5

Where
f=(6+2v6)" +(5-2v6) ",
g, =(5+2v6)"~(5-2/6]", n=-1,0,1..

To aobtain the sequence of solutions of (1), we employ the lemma known as

Brahmagupta lemma stated as follows:

If (XO, yO) and (Xi, yl) represent the solutions of the pell equations Yy = DX” + K and y? = DX? + k,
(D>0 and square free)respectively, then (Xoy1 + YoXi» YoYi t DXOXI) represents the solution of the pell
equation y* = DX* + kK,

Applying Brahmagupta lemma between (XO, yo) and (in, yn) , the other integer solutions of (1) are given by

_lf _}_ig
n+1 2 n \/E n

3
=2f +-2
yn+l n '6 gn

= 2.6x,,=+/6f +4g, ©)

J6y,,, = 2J6f, +3g, )
Replacing N by N+ 1in (3), we get

2/6x,,, =61, +49,.,

2./6x,., = V6(5f, + 2/6g, )+ 4(5g, + 261, |

2./6x ., =13\6f +32g, )

Replacing N by Nn+1 in (5), we get

2\/6Xn+3 = 13'\/6 fn+l + 329n+1
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2.6x,,, =13V6(5, + 264, )+ 32(5g, + 261, )

2./6x ., =129\/6f_ + 3169, ©

Replacing Nby N+1 in (4), we get
\/Eyn+2 = 2\/6fn+1 + 3gn+1
= 2./6(5f, + 2/6g, )+ 350, + 2161, )

J6y. ., =166 +39g, )
Replacing Nby N+1 in (7), we get

V6y,., =16V6f,., +399,,

~16V6(51, + 264, ]+ 3959, + 261, )

J6y. , =158/6f +387g, 6)

These are representing the non-zero distinct integer solutions of (1)

A few numerical examples are given in the following Table 1

Table 1: Numerical Examples

n Xn+1 yn+1
-1 1 4

0 13 32

1 129 316

2 1277 3128
3 12641 30964
4 125133 306512

The recurrence relations satisfied by the values of X, and Y, ; are respectively,
X.3—10x ., +X =0, n=-101..

Ynis _loyn+2 Yo = 0 n= —1,0,1

A few interesting relations among the solutions are given below:

X, isalwaysodd, Y, isalwaysevenand Y, , = O(mod 4).
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Relations among the Solutions

* 5Xn+2 - 1Oyn+l - 25XnJrl =0

e 25X.,,—5X,,—-10y, ., =0

n+2

* 24'5Xn+2 - 25Xn+1 - 1Oyn+3 =0
® - 25yn+1 - 60Xn+1 + 5yn+2 =0
¢ - 5yn+1 - 60Xn+2 + 25yn+2 =0

e —25y,,—60x,,+245y,,=0

Nasty Numbers

Solving (3) and (5), we get

J6

g, = E (13Xn+1 - Xn+2)

Replacing Nby 2n+1 in (9), we have

Bm=émm—&mﬁ
Note that,

f,,+2=17
Now,

2

Ni= {% (X2n+3 —8%,,.5 ) + 12} isaNasty number.

The other choices of Nasty humbers are presented below

3
e Np= g (13y2n+2 ~ Yonis ) + 12j|

(12

o Ne=| o (2y2n+3 - 39X2n+2) + 12}

|25

Impact Factor (JCC): 6.2284

6{% (X2n+3 - 8X2n+2 ) + 2} =6 fn2

Dr. Shreemathi Adiga

9)

(10)

NAAS Rating 3.45
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6
o Ng= |:E (32y2n+2 - 6X2n+3) + 12}

Cubical Integers

Replacing N by 3n+ 2in (9), we have

2
f3n+2 = g(x3n+4 - 8X3n+3)
Now,
f3n+2 = fn3 - 3fn

f3n+2 + 3fn = fn3

2 6
= fn3 = g (X3n+4 - 8X3n+4)+ g ((Xn+2 - 8Xn+1))

2 6
= Cl = (X3n+4 - 8X3n+4)+ = ((Xn+2 - 8Xn+1)) . . .
5 5 isaCubical integer.

The other choices of Cubical integers are presented below:

1 3
e GC,= E (13y3n+3 ~ Yania ) + E (13(yn+1 = Yni2 ))

2

6
® C;= 2_5 (2y3n+4 - 39X3n+3)+ 2_5 ((zymz - 39Xn+l))

1 3
. C4 = g (32 y3n+3 - 6X3n+4 ) + % ((32 yn+1 - 6Xn+2 ))

Bi-Quadratic I ntegers
Replacing n by 4n+ 3in (9), we have

2

f4n+3 = g (X4n+5 - 8X4n+4)

Now, f, ,+4f>-2=f*

4n+

= fn4 =c (X4n+5 - 8X4n+4)+ A|:§ (X2n+3 - 8X2n+2 ) + 2j| -2

N

B, == (X5 — 8% )+ {g (Xops — 8% )} + 6 isaBi-quadratic integer.
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The other choices of Bi-quadratic integers are presented below:

1 4
* B 2 :1_0(13y4n+4 - y4n+5)+ |:E (13y2n+2 ~ Yoni3 )jl +6
. B =3(2y —39x )+—£(2y —39x )—+6
3 25 4n+5 4An+4 | 25 2n+3 2n+2 |

1 4
. B, :2_5(32y4n+4 - 6X4n+5) + 2_5(32y2n+2 - 6X2“+3) +6

REMARKABLE OBSERVATIONS

Dr. Shreemathi Adiga

Employing linear combinations among the solutions of (1), one may generate integer solutions for other choices of

hyperbola which are presented below:

Solving (4) and (7), we get

1
f =—X @1
T (11)
J6
=—Y (12
O, 15 (12)

where
X = 13yn+1 ~ Y2
Y = Yoo = 8yn+1

Weknow that, f?—g? =4 (13)

Substituting (11) and (12) in (13), we have

EREIR

1y 6,
100 225

= 9X 2 —24Y? = 3600 which represents the Hyperbola.

The other choices of hyperbolas are presented in the Table: 2 below

Impact Factor (JCC): 6.2284
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Table 2: Hyperbolas

S.No Hyperbolas

(X.Y)

1 | 16X*-6Y? =400

(X - 8Xn+1 ,

n+2

13Xn+1 - Xn+2)

2 | 4X*-6Y?*=2500

(Zyn+2 - 39Xn+l , 32Xn+l - yn+2)

3 X? —6Y? =2500

4y, 12X

n+2 !

4Xn+2 - 13yn+1)

Employing linear combinations among the solutions of (1), one may generate integer solutions for other choices

of parabolas which are presented below:

Solving (3) and (5), we get

f-2x g, -
5 10
where
X = (Xn+2 - 8Xn+1)
Y =(13x,,, — X,,,) Replacing n by 2n+1 in(9), we have
2
f2n+1 = g (X2n+3 - 8X2n+2)
Note that

f2n+l +2= fn2

L fi==

n

2
=
2

Xoniz — 8X2n+2 ) +2

L fP=EX+2

2

6

g, =7+

100

(15

2
(16)

Substituting (15) and (16) in (13), we have

2

6

cx -

5

100

Y2=2

= 40X —6Y?2 = 200 which represents a Parabola.
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The other choice of parabolasis presented in the Table: 3 below:

Table 3: Parabolas

S. No Parabolas

(X.Y)

1 45X —12Y? =900

(13y2n+2 ~ Yoniar Yoo — 8yn+1)

2 18X —6Y? =900

(2y2n+3 - 39X2n+2’ 32Xn+1 - yn+2)

3 25X —6Y? =1250

(32y2n+2 - 6Xz 4Xn+2 _13yn+l)

n+3?

Generation of the Pythagorean Triangle

Let p, g be the non-zero distinct integerssuch that =X, + Y., » 4= X 4

Notethat p > ¢ > 0. Treat p, q as the generators of the Pythagorean triangle T(X Y, Z)

X=2pg,Y=p*-q*,Z=p*+0q%,p>q>0

Then
Z-X = (p-q)* Z-Y=2¢f
Let (Z-X)= 3(Z-Y) +10
(p-6)* =6” +10
6g° =Z-X-10 (1)
Z-X=6¢f +10
Y% =6X?+10:
Where
(P-a)=Y X=q
Let A,P represent the area and perimeter of T
Then
2AIP = 2(pa(p2-02)/2p(pta) =a(p-a)
4AP =2pg-29°
60° =6pg-12A/P =3(X-4A/P) (2) from (1) and (2)
So the following interesting relations are observed.
e 3Y-X-2Z=10

®  z_o4x +%=10

. 3()( 4AJ isa Nasty number

Impact Factor (JCC): 6.2284
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A
? =X n+1yn+1

CONCLUSIONS

In this paper we presented infinitely many integer solutions to the hyperbola represented by the positive pell equation

y> =6x*+10 along with suitable relations between the solutions, Since Quadratic Diophantine equations are infinite, one

may attempt to determine integer solutions of other equations of degree 2 as well as higher degree with suitable properties.
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